Geothermal Heat Pumps

Types of Geothermal Heat Pumps

There are four basic types of ground loop systems. Three of these -- horizontal, vertical, and pond/lake -- are closed-loop systems. The fourth type of system is the open-loop option. Which one of these is best depends on the climate, soil conditions, available land, and local installation costs at the site. All of these approaches can be used for residential and commercial building applications.

CLOSED-LOOP SYSTEMS

Most closed-loop geothermal heat pumps circulate an antifreeze solution through a closed loop -- usually made of plastic tubing -- that is buried in the ground or submerged in water. A heat exchanger transfers heat between the refrigerant in the heat pump and the antifreeze solution in the closed loop. The loop can be in a horizontal, vertical, or pond/lake configuration.

One variant of this approach, called direct exchange, does not use a heat exchanger and instead pumps the refrigerant through copper tubing that is buried in the ground in a horizontal or vertical configuration. Direct exchange systems require a larger compressor and work best in moist soils (sometimes requiring additional irrigation to keep the soil moist), but you should avoid installing in soils corrosive to the copper tubing. Because these systems circulate refrigerant through the ground, local environmental regulations may prohibit their use in some locations.

HORIZONTAL

This type of installation is generally most cost-effective for residential installations, particularly for new construction where sufficient land is available. It requires trenches at least four feet deep. The most common layouts either use two pipes, one buried at six feet, and the other at four feet, or two pipes placed side-by-side at five feet in the ground in a two-foot wide trench. The Slinky™ method of looping pipe allows more pipe in a shorter trench, which cuts down on installation costs and makes horizontal installation possible in areas it would not be with conventional horizontal applications.

Horizontal Geothermal Heat Pump

VERTICAL

Large commercial buildings and schools often use vertical systems because the land area required for horizontal loops would be prohibitive. Vertical loops are also used where the soil is too shallow for trenching, and they minimize the disturbance to existing landscaping. For a vertical system, holes (approximately four inches in diameter) are drilled about 20 feet apart and 100 to 400 feet deep. Into these holes go two pipes that are connected at the bottom with a U-bend to form a loop. The vertical loops are connected with horizontal pipe (i.e., manifold), placed in trenches, and connected to the heat pump in the building.

Vertical Geothermal Heat Pump

POND/LAKE

If the site has an adequate water body, this may be the lowest cost option. A supply line pipe is run underground from the building to the water and coiled into circles at least eight feet under the surface to prevent freezing. The coils should only be placed in a water source that meets minimum volume, depth, and quality criteria.

Pond Geothermal Heat Pump

OPEN-LOOP SYSTEM

This type of system uses well or surface body water as the heat exchange fluid that circulates directly through the GHP system. Once it has circulated through the system, the water returns to the ground through the well, a recharge well, or surface discharge. This option is obviously practical only where there is an adequate supply of relatively clean water, and all local codes and regulations regarding groundwater discharge are met.

Open-Loop System

HYBRID SYSTEMS

Hybrid systems using several different geothermal resources, or a combination of a geothermal resource with outdoor air (i.e., a cooling tower), are another technology option. Hybrid approaches are particularly effective where cooling needs are significantly larger than heating needs. Where local geology permits, the "standing column well" is another option. In this variation of an open-loop system, one or more deep vertical wells is drilled. Water is drawn from the bottom of a standing column and returned to the top. During periods of peak heating and cooling, the system can bleed a portion of the return water rather than re-injecting it all, causing water inflow to the column from the surrounding aquifer. The bleed cycle cools the column during heat rejection, heats it during heat extraction, and reduces the required bore depth.

Proudly Serving Andover MA

North Reading and the Surrounding Communities

Furnace repair  in Lexington MA North Reading
Boiler repair  in Lexington MA Reading
Heater repair  in Lexington MA Middleton
Furnace repair  in Andover MA Lynnfield
Heater repair  in Lexington MA Wilmington
Boiler repair  in North Reading MA Hathorne
Heater repair  in Lexington MA Wakefield
Boiler repair  in Lexington MA North Andover
Heater repair  in North Reading MA Peabody
Boiler repair  in Lexington MA Danvers
Furnace repair  in North Reading MA Woburn
Furnace repair  in Lexington MA Boxford
Heater repair  in Andover MA Stoneham
Boiler repair  in Andover MA Tewksbury
Furnace repair  in North Reading MA Burlington
Boiler repair  in Lexington MA Pinehurst
Furnace repair  in Lexington MA Topsfield
Furnace repair  in Lexington MA Lawrence
Furnace repair  in Lexington MA Melrose
Furnace repair  in Andover MA Saugus
Boiler repair  in Lexington MA Lynn
Furnace repair  in North Reading MA West Boxford
Boiler repair  in Lexington MA Billerica
Furnace repair  in North Reading MA Winchester
Heater repair  in Lexington MA Nutting Lake
Furnace repair  in North Reading MA Salem
Furnace repair  in Lexington MA Malden
Heater repair  in Andover MA North Billerica
Boiler repair  in Andover MA West Medford
Heater repair  in Andover MA Medford
Boiler repair  in Andover MA Arlington Heights
Furnace repair  in Lexington MA Wenham
Furnace repair  in Lexington MA Bedford
Furnace repair  in Andover MA Lowell
Boiler repair  in Andover MA Georgetown
Heater repair  in Andover MA Methuen
Boiler repair  in Lexington MA Beverly
Furnace repair  in North Reading MA Swampscott
Heater repair  in North Reading MA Arlington
Boiler repair  in Lexington MA Haverhill
Furnace repair  in North Reading MA South Hamilton
Heater repair  in Lexington MA Hamilton
Boiler repair  in Lexington MA Revere
Boiler repair  in Andover MA Everett
Boiler repair  in Lexington MA Groveland
Boiler repair  in Lexington MA Somerville
Heater repair  in Lexington MA Waverley
Heater repair  in Lexington MA Marblehead
Heater repair  in Andover MA Chelsea
Furnace repair  in Lexington MA Boston
Cities We Service
24-Hour Emergency Service Available 7 Days a Week
Royal Air Systems, Inc.
210 Main Street
North Reading, MA 01864
Monday - Friday: 8:00am - 5:00pm
For Furnace repair in Andover MA, we accept visa credit cards. For Furnace repair in Andover MA, we accept mastercard credit cards.
When we service your Boiler in Lexington MA, your satifaction means the world to us.
Serving Boston's Northshore Communities Since 1980
View Map